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Abstract— Currently Differential Evolution (DE) is arguably 

the most powerful and widely used stochastic population-based 

real-parameter optimization algorithm. There have been variant 

DE-based algorithms in the literature since its introduction in 

1995. This paper proposes a novel merit-based mutation strategy 

for DE (MDE); it is based on the performance of each individual 

in the past and current generations to improve the solution ac-

curacy. MDE is compared with three commonly used mutation 

strategies on 28 standard numerical benchmark functions intro-

duced in the IEEE Congress on Evolutionary Computation 

(CEC-2013) special session on real parameter optimization.  Ex-

perimental results confirm that MDE outperforms the classical 

DE mutation strategies for most of the test problems in terms of 

convergence speed and solution accuracy. 

Keywords – Global optimization, Differential evolution, Evolu-

tionary algorithms, P-metaheuristics, Merit-based selection. 

I. INTRODUCTION 

OWADAYS, real-world applications are increasingly com-

plex and more encompassing, in the sense that more de-

cision variables are used to model complex situations and 

more input data and parameters are available to capture the 

complexity of the problems. Since finding exact solutions in 

these applications still poses a real challenge despite the im-

pact of recent advances in computer technology, there are nu-

merous metaheuristics capable of finding “good” solutions in 

a “reasonable” time.  Due to the inherent complexities and 

dynamics we have in nature, and its ability to tackle with its 

own problems, nature is the main source of inspiration for 

solving our complex problems in science and engineering [1].     

Metaheuristics are high-level strategies for exploring 

search spaces by using variant search methods. Their main 

goal is efficiently exploring the search space in order to find 

optimal (or near to optimal) solutions in reasonable time. 

They solve problems which are “hard” to solve by exhaustive 

exploring. Metaheuristics have been used in many applica-

tions ranging from software engineering, energy systems de-

sign, bioinformatics, telecommunication, finance and others. 

A description of well- known metaheuristics can be found in 

[2, 3]. 

Metaheuristics can be divided into two main categories, 

namely, population-based metaheuristics (P-metaheuristics) 

 
 

and single solution-based metaheuristics (S-metaheuristics). 

Basically, they differ by the number of tentative candidate so-

lutions which are involved in every iteration. S-metaheuristics 

start with a single initial solution which is replaced by a more 

accurate solution at every iteration. These types of optimiza-

tion methods offer strong local search properties known as 

exploitation properties - however, they get trapped by local 

optima.  

In contrast, P-metaheuristics use an entire set of candidate 

solutions called population which are improved at every iter-

ation. The first step in P-metaheuristics is the initialization of 

the population. Next is the generation of current population. 

Then, new population is selected from previous and current 

population, based on their corresponding fitness values. Fi-

nally, this process is repeated until stopping criteria are met. 

The main advantage of P-metaheuristics is that the diversifi-

cation of the population aids the search properties known as 

exploration properties.  

Almost all P-metaheuristics are nature-inspired, in which 

multiple agents interact to solve or accomplish a given task. 

Though arguably nature-inspired algorithms are still at their 

early stages, many have shown a great potential in solving 

very complicated problems with diverse applications in engi-

neering, business, economics, and communication networks. 

For example, EAs are nature-inspired population-based meth-

ods taken from the biological evolution of living organisms to 

adapt to their ecosystem.   

The core component of any EA is the selection strategy [4]. 

The selection strategy determines which parents are selected 

for mating (reproduction) in the hope that they would generate 

better offspring (i.e. individuals with a bias toward better fit-

ness). There are mainly four selection strategies in EA:  rou-

lette wheel selection, random, rank-based, and tournament-

based selection. The roulette wheel selection assigns each in-

dividual a selection probability that is proportional to its rela-

tive fitness and as a result the fittest individuals will introduce 

a bias that may cause a premature convergence and a loss of 

diversity. Moreover, if the objective is minimization rather 

than maximization, a transformation is required. When all in-

dividuals are equally fit, this strategy is similar to random se-
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lection. The tournament selection strategy selects � fittest in-

dividuals from �  randomly selected individuals based on 

tournament [5]. This strategy is subject to arbitrary stochastic 

effects in the same way as roulette-wheel selection - there is 

no guarantee that the best individual survive through the se-

lection process. 

The rank-based selection strategy is similar to roulette 

wheel selection however an individual assigned a rank instead 

of the fitness value. This imposes a sorting overhead on the 

algorithm, but this is usually negligible compared to the fit-

ness evaluation time. All the above-mentioned selection strat-

egies are based on individual’s current performance and ig-

nore past achievements of an individual throughout the gen-

erations.    

This paper proposes a novel evolutionary probabilistic se-

lection strategy called merit-based selection strategy to miti-

gate the above-mentioned and other problems associated with 

widely used selection strategies in EAs. The rest of the paper 

is organized as follows. Section II a description of DE algo-

rithm. Section III provides a comprehensive review of the 

state-of-the-art work on improving the DE algorithm. Section 

IV provides the technical description of the proposed algo-

rithm, called merit-based mutation strategy for DE (MDE). 

Section V presents the benchmark functions utilized in our 

experiments, and experimental results and analysis.  Finally, 

the paper is concluded in Section VI. 

II. DIFFERENTIAL EVOLUTION: A BRIEF 

INTRODUCTION  

DE was introduced by Storn and Price [6] as a global effi-

cient optimization algorithm. It attempts to solve a problem 

by selecting a better candidate solution based on its fitness 

value. Similar to all other P-methaueristcs, DE starts with a 

population of NP D-dimensional parameter vectors represent-

ing initial candidate solutions. 

Assume that solution ��,�	 is a set of D-variable which is 

represented by a �-dimensional variable row vector.  ��,�	, 	 = 1,2, … , ��, 

where � indicates the generation and �� is population size. 

The initial population (�	 = 	0) is generated uniformly ran-

domly as follows:   

 

��,�,� = 	��,��� + �����,��0,1� ∙ ���,�� − ��,���", (1)  

 

where �����,��0,1� is a uniform random number between 0 

and 1;  ��,��  and ��,��� are variable boundaries. 

A. Mutation 

For each target vector	��,�	, a mutant vector (noisy vector) #�,�	is generated using certain mutation strategy. The general 

DE mutation and crossover strategy is denoted by DE/X/Y/Z; 

where X is the vector to be mutated; Y is the number of differ-

ence vectors used; and Z is the crossover scheme which is ei-

ther binomial or exponential. The most commonly used mu-

tation strategies are the followings: 

 

DE/best/1: #�,� = �$%&',� + (��$,� − �),�" (2) 

DE/rand/1: #�,� = 	��,� + 	(��$,� − �),�" (3) 

DE/rand-to-

best/1: 
#�,� = 	��,� + 	(��$%&',� − �$,�"+ (��),� − �*,�" (4) 

DE/best/2: #�,� = �$%&',� + 	(���,� − �$,�"+ (��),� − �*,�" (5) 

DE/rand/2: #�,� = ��,� + 	(��$,� − �),�"+ (��*,� − �%,�" (6) 

 

where �$%&',� is the best individual vector in term of fitness 

value; and 	��,� ,	�$,� , �),� , �*,�  and �%,�  are different ran-

dom vectors chosen from the current population,   	 ≠ � ≠ 		,	 ≠ -	 ≠ �	 ≠ . 

The population size should be	�� ≥ 4 and (	 ∈ [0, 2]  is a 

real constant number which controls the diversification of the 

solution vector. 

B. Crossover 

There are mainly two crossover strategies of DE: binomial 

and exponential. In the binomial crossover the trial vector is 

determined by following equation:   

 4�,�56 = �76�,�56, 78�,�56, … , 79�,�56�, (7) 

where 

 7��,�56 =	 :;��,�56		<	����� 	≤ >?	@�		A = B
���,� 																									@Cℎ.�E	F.	  (8)  

 

For A = 1,2, … , � , ����� ∈ [0, 1] , >? ∈ [0,1]  and B	 ∈
{1, 2, … , �} is a random parameter index which guarantees 

that 4�,�56 gets at least one variable from #�,�56. 

On the other hand, in the exponential crossover the trial 

vector is generated using two-point modulo operation. The 

first point � ∈ [1, �] is selected randomly to be the starting 

point in the target vector, where the exchange of variables 

with the mutant vector and the second point I ∈ [1, �] deter-

mines the contribution (i.e., of variables) of the mutant vector. 

The starting position of crossover is selected from the mutant 

vector until a random number surpasses the >? value or the 

number of consecutive variables is equal to the random point 

selected, then the remaining vectors from the target vector.  

   7��,�56
= 	J;��,�56	<@�	A = 	 〈�〉9, 〈� + 1〉9, … , 〈� + I − 1〉9���,� 									<@�	�MM	@Cℎ.�	A ∈ [1, �]	  

(9) 

where the 〈 〉� denote a modulo function with modulus �; 
and I is generated according to the following pseudo-code: I	 = 	0	

DO 

    I = I + 1 

WHILE (�����0,1� 	< 	>?	P��	I < �) 

C. Selection  

The following greedy selection is used to determine which 

vector	{4�,� , ��,�} should be a member of the next population 

based on cost value. 

 ��,�56 =	J4�,�56				<	<�4�,�56" ≤ 	<���,�"				��,�																										QCℎ.�	E	F.  (10)  



III. RELATED WORKS 

Due to the simplicity and effectiveness of DE, many re-

searchers are focusing on its improvement and this resulted 

many variants of the basic algorithm with improved perfor-

mance.  One variant of the DE algorithm involve slight mod-

ification of the mutation and crossover strategies. For exam-

ple, Ali and Pant [7] proposed a Cauchy mutation strategy to 

get a better trade-off between the convergence rate and ro-

bustness. They have used a failure counter to track the pro-

gress of individuals so that the individuals that fail to show 

any improvement in the function value for a successive num-

ber of generations are subject to Cauchy mutation with the 

hope of pulling them out of a local optimum. 

Similarly, Islam et al. [8] proposed mutation and crossover 

strategy similar to DE/current-to-best/1 scheme to overcome 

the premature convergence and stagnation problems observed 

in the classical DE. The proposed mutation strategy selects 

the best vector from a dynamic group of R% of the randomly 

selected population members. Moreover, their crossover strat-

egy uses a vector that is randomly selected from the p top-

ranking vectors according to their objective values in the cur-

rent population (instead of the target vector) to promote the 

inclusion of generic information from the elite individuals in 

the current generation.  The parameter p is linearly reduced 

with generations to maintain the exploration and exploitation 

stages by gradually downsizing the elitist portion of the pop-

ulation.  

Gong and Cai [9] proposed rank-based mutation operators 

for the DE algorithm, where parents are selected based on 

their rankings. In each iteration, parents are assigned their cor-

responding ranking according to their fitness. The mutant vec-

tors are then selected based on selection probability, which is 

proportional to the rankings of parents in the current popula-

tion. This strategy imposes a sorting overhead on the algo-

rithm, but this is usually negligible compared to the fitness 

evaluation time. However, it ignores past achievements (his-

tory) of individuals throughout the generations, thereby losing 

good historical information of individuals that can lead to bet-

ter convergence.    

Epitropakis et al. [10] proposed proximity-based DE where 

mutant vectors are selected from the nearest neighbors of the 

target vector instead of random vectors. The neighbor vectors 

are selected based on probabilities inversely proportional to 

the distance from the mutated individual. It has shown to re-

duce the excessive exploratory nature of DE and promote ex-

ploitation in some areas of the search space. The key role of 

the proximity framework is to exploit possible clustering 

structure of the population over the problem’s minima and in-

corporate this information in the evolution phase of the algo-

rithm. More on modified mutation and crossover strategies of 

DE can be found in [11] – [14]. 

Other variants of DE include adaptive parameter control 

and embedding new components in DE. Zhang and Sanderson 

[15] proposed a parameter adaptation strategy (called JADE) 

by evolving the mutation factors and crossover probabilities 

based on their historical record of success to eliminate the 

need of prior knowledge of the relationship among the param-

eter settings and the characteristics of optimization problems. 

The mutation factor for each individual is independently gen-

erated according to the Cauchy distribution with location up-

dated based on the Lehmer mean in each generation.  

Similarly, Brest et al. [16] proposed a self-adaptive ap-

proach for DE control parameters in attempt to determine the 

best values of F and CR for any given problem. Their ap-

proach extends the representation of each individual in the 

population with F and CR values to go through the evolution 

process in hope that the control parameters lead to better in-

dividuals. 

Rahnamayan et al. [17] have proposed an opposition-based 

DE (ODE) based on opposition-based learning and generation 

jumping in order to accelerate the convergence rate of DE. 

The population initialization stage of ODE involves generat-

ing random solutions as well as the opposite population and, 

subsequently selecting the fittest individuals from the union 

of these two sets. Similarly, based on generation jumping rate, 

opposite of the current population is generated within reduced 

search space and only the elite members of the population ad-

vance to the next generation.  

IV. PROPOSED ALGORITHM: MDE 

The idea of merit-based selection in general is not new – it 

has been used in professional sports for determining entry and 

seeding in all tournaments. In professional sports, merit-based 

ranking is done based on a ranking period, usually the imme-

diate past 52 weeks performances of each individual. This ap-

proach gives a chance to those individuals who have not done 

well (because of injury or “luck”) at the current stage of the 

tournament.  

In this section, we discuss the main concepts behind a merit-

based mutation strategy for differential evolution (MDE) al-

gorithm.  In nature, prominent species retain and utilize valu-

able past and current information to improve their fitness and 

the fitness of future generations (offspring). Similarly, MDE 

utilizes past and current performances of individuals to guide 

the search process. MDE is similar to the classical DE except 

that at the mutation stage the mutant vectors are selected 

based on their “merit” (i.e. past and current performance). The 

proposed scheme consists of two memories: the short-term 

and the long-term memories. The short-term memory stores 

individuals’ current improvement (objective space) and the 

long-term memory stores the overall improvement made by 

each individual.  

A. Short-term Performance 

The short-term performance of MDE assigns performance 

weights proportional to each individual’s improvement. They 

are computed as follows (for maximization problem the less 

than “<” operator should be replaced with greater than “>” 

operator): 

    

T�U = J<���VW%X" − <���YZWW"							<		<���YZWW" < <���[W%X"
0																																													@Cℎ.�E	F.  (11)

where 	 = {1,2, … , ��} (��: population size) and the selec-

tion probability is defined as:  

\�U = T�U∑ T̂U_[^`6
 (12)



B. Long-term Performance 

The main goal of the long-term performance measure is to 

eliminate the bias towards individuals which do not show any 

or little improvement in the current generation but have 

shown significant contribution in terms of fitness improve-

ment throughout generations. Thus, the long-term weight 

stores the total performance of each individual in the past gen-

erations as well as the current generation.  

At the initialization stage, the long-term weights of MDE 

computed as follows:  

 

T�a

= ���[<��6�, <��8�,… , <��_[�] − �	�	[<��6�, <��8�,… , <��_[�]��
(13) 

The main purpose of Eq. (13) is to avoid favouritism towards 

the best individuals at the initialization stage that may cause 

premature convergence. The division by �� in Eq. (13) is 

avoid T�a from being the dominating value when individuals’ 

future improvements are significantly smaller than	T�a .   

The weight factors in each generation are updated as fol-

lows (for maximization problem the less than “<” operator 

should be replaced with greater than “>” operator): 

T�a = JT�a +T�U 							<		<���YZWW� < <���[W%X�
T�a																														@Cℎ.�E	F.  (14)  

 

where 	 = {1,2, … , ��} and the selection probability is de-

fined as:  

\�a = T�a∑ T â_[^`6
 (15)  

C. Mutation 

The classical mutation strategies in Eqs. (2) to (6) involve 

selecting several mutant vectors randomly.  However in MDE 

the mutant vectors are selected based on a selection pressure 

probability defined as below: 

\� = 1
2 [\�a + \�U]	 (16)  

where \�aand \�U the long and short-term selection probabili-

ties of the 	'b individual. Since the overall selection pressure 

is proportional to \�aand \�U, individuals with little or no im-

provement at the current stage would still have a chance to be 

selected based on their past performance. Algorithm 1 shows 

the pseudocode of the proposed MDE algorithm.  

D. Advantages of the Proposed Algorithm 

There are several technical and performance advantages of 

the proposed MDE algorithm over traditional selection strat-

egies used in EA. 

• The fitness of an individual is measured based on im-

provements over the short-term and the long-term 

(i.e. current performance is not the solely criteria for 

elitism). This modification allows individuals with 

little or no improvement at the current stage to still 

have a chance to be selected based on their past per-

formance. This is similar to the ranking/point 

method used in professional sports such as tennis 

and golf.  

• MDE is computationally lite; the complexity of com-

puting the short-term and long-term performances is 

Q����- it eliminates the need of sorting required by 

some of the selection strategies such as elitism 

and/or rank-based selection methods. Note that 

Q���� storage is required this procedure. 

• Unlike the traditional proportional fitness initializa-

tion, MDE initialization assigns equal weights to all 

individuals. This would not lead to favouritism to-

wards the best individuals at the initialization stage 

which may cause premature convergence. 

• Since MDE uses the improvements made by individ-

uals (always positive) throughout the generation, it 

does not need any transformation or scaling required 

by roulette-wheel method when the objective func-

tion values are large, negative, or the objective is 

minimization rather than maximization. 

 

Algorithm 1: Merit-based Mutation Strategy for DE (MDE) 

1. Generate uniformly distributed random population �� 

/* Evaluate current population fitness */ 

2. #�M� = <���� <@�		 = 1, 2, … , �� 
/* Initialize the short-term and long term-performance */  

3. T�U = 0		<@�		 = 1, 2,… ,�� 	
4. If ����;�M� > 	�	��;�M�		
5.     T�a = �� �X�d�	–	����X�d�	

_[ 	<@�		 = 1, 2, … , ��	
6. Else	
7.     T�a = 1	<@�		 = 1, 2, … , ��	
8. End If	

/* Initialize selection probability */  

9. \� = 1/��	 <@�		 = 1, 2,… ,�� 

10. While �(>	 < 	gP�_hY	
11.     For 	 = 1	C@	��	
12.         Select mutant vectors based on \�  /*Roulette Wheel*/	
13.         Apply mutation  /* One of the mutation strategy from 

eqns. (2) to (6) */	
14.         Apply binomial crossover  /* Eqn. (8) */	
15.         /*Update the short-term and long-term performance*/ 	
16.        If <�4�� < <����	
17.             ��i = 4�	
18.             T�U = |<�4�� − <����| 	
19.             T�a = T�a +T�U       	
20.         Else	
21.             ��i = �� 	
22.             T�& = 0	
23.         End If	
24.     End For	

    /*Update selection probability*/	
25.     For 	 = 1	C@	��	
26.         \� = 6

8 [T�&/F7��TU�] + 6
8 [T�a:/F7��Ta�]	

27.     End For	
28.     �i = �	
29. End While 

V. EXPERIMENTAL SETTINGS AND RESULTS 

A. Benchmark Functions 

In order to test the quality of the proposed algorithm, we 

have used 28 well-known numerical benchmark problems 

taken from the IEEE Congress on Evolutionary Computation 



(CEC-2013) special session on real parameter optimization 

[20]. The definition of the benchmark functions and their 

global in [20]. Test problems <6 –	<l are shifted and/or rotated  

unimodal functions, problems <6  – 	<20  are multimodal 

shifted and/or rotated continuous functions (except <13), and  

problems <21 – 	<28 are composition functions (a function 

composed of three or more function from problems <1 −<20. The search range for all the problems are	[−100, 100]9. 

All the test functions used in this paper should be minimized.  

 

(a) <q, �	 = 	30 

 
(b) <q, �	 = 	100 

(c) <6r, �	 = 	30 
 

(d) <6r, �	 = 	100 

(e) <88, �	 = 	30 
 

(f) <88, �	 = 	100 

Fig. 1.  Sample graphs (best solution versus NFCs) for performance comparison between DE and MDE for D = 30 and D = 100. 
 

B. Parameter Settings   

The classical DE has two problem-dependent control pa-

rameters ( and >? which need to be tuned by the user. How-

ever, in order to maintain a consistent and fair comparison, 

the parameter settings of DE and MDE are kept the same for 

all experiments. In addition the parameters settings used in 

this study are extensively utilized in the literature. Parameter 

settings for all conducted experiments are as follows:  

Administrator
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• Population size, �V = 100 [15]-[17] 

• Crossover factor, >? = 0.9 [6], [15], [18], [19] 

• Mutation scaling factor, ( = 0.5 [6], [15], [18] 

• Maximum Function calls, gP�_hY = 10,000 ∗ � 

To evaluate the performance of the proposed algorithm, we 

have used an error measure, defined as |<��� − <��∗�| where �∗ is the global optimum of the benchmark function and � is 

the best solution achieved after 10,000 ∗ � function evalua-

tions, where � is the dimensionality of the problem. Further-

more, all algorithms were executed 25 times independently 

and the mean and standard deviation of each algorithm were 

recorded. 

C. Experimental Results and Analysis   

Four series of experiments have been conducted to evaluate 

the performance of the proposed algorithm. Wilcoxon’s rank-

sum statistical [21] is conducted at the 5% significance level 

in order to evaluate the statistical significance the obtained 

results. Furthermore, error values less than 10-8 are reported 

as zero. In the first experiment, we have compared the perfor-

mance of five commonly used traditional mutation strategies 

on the 28 benchmark problems to select the best and the worst 

mutation strategies for these test problems. The experiments 

consisted of having respective dimensionalities of 10, 30, 50, 

and 100.  

TABLE I. THE NUMBER OF WINS BY EACH MUTATION STRATEGY OUT OF 

28 BENCHMARK PROBLEMS FOR D = 10, 30, 50 AND 100. 

D DE/best/1 DE/rand/1 
DE/rand-

to-best/1 
DE/best/2 DE/rand/2 

10 14 7 2 5 3 

30 10 12 2 4 0 

50 11 13 2 2 0 

100 11 14 1 2 0 

Total 46 46 7 13 3 

 

TABLE II. COMPARISON OF THREE BINOMIAL MUTATION STRATEGIES (DE/RAND/1, DE/RAND-TO-BEST/1, AND DE/RAND/2) AGAINST THEIR 

CORRESPONDING MDE STRATEGY (D = 30). MEAN BEST AND STANDARD DEVIATION (STD DEV) OF 25 RUNS AND 10,000∙D FUNCTION CALLS ARE 

REPORTED. THE BEST ALGORITHM IS HIGHLIGHTED IN GREY. THE TOTAL ROW SHOWS THE NUMBER OF WINS BY EACH MUTATION STRATEGY. *  INDICATES 

THE TWO-TAILED WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL. 

 F 

DE/rand/1 MDE/rand/1 DE/rand-to-best/1 MDE/rand-to-best/1 DE/rand/2 MDE/rand/2 

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.72E-04 5.85E-04 0.00E+00* 6.82E-14 3.61E+00 1.04E+00 0.00E+00* 0.00E+00 

f2 1.13E+06 5.65E+05 1.31E+05* 6.17E+04 5.83E+07 1.59E+07 4.23E+05* 2.45E+05 2.61E+08 6.31E+07 3.27E+05* 2.07E+05 

f3 4.31E-01* 1.07E+00 8.49E+07 8.92E+07 1.60E+11 1.42E+11 1.07E+07* 1.62E+07 8.95E+11 3.14E+11 5.86E+06* 8.27E+06 

f4 1.45E+03 6.76E+02 2.27E+02* 5.82E+01 7.06E+04 2.99E+04 2.63E+01* 1.52E+01 1.94E+05 4.61E+04 3.73E+02* 1.53E+02 

f5 0.00E+00 5.68E-14 0.00E+00 0.00E+00 7.48E-02 2.51E-02 0.00E+00* 7.96E-14 3.05E+01 8.98E+00 0.00E+00* 0.00E+00 

f6 1.65E+01* 1.22E+00 1.94E+01 1.11E+00 2.09E+01 6.96E-01 4.06E+00* 1.25E+00 3.42E+01 3.13E+00 3.94E+00* 7.75E-01 

f7 3.64E-01* 2.41E-01 5.96E+01 1.72E+01 5.69E+02 1.05E+02 8.67E+01* 2.31E+01 1.36E+03 3.09E+02 3.86E+01* 2.51E+01 

f8 2.09E+01* 4.74E-02 2.10E+01 5.04E-02 2.09E+01 5.63E-02 2.10E+01 2.74E-02 2.10E+01 3.92E-02 2.10E+01 4.62E-02 

f9 3.91E+01 1.34E+00 2.89E+01* 6.98E+00 3.97E+01 9.69E-01 3.93E+01* 1.21E+00 3.88E+01 1.04E+00 3.97E+01 1.01E+00 

f10 5.92E-03* 5.53E-03 5.32E-02 2.41E-02 8.94E+00 3.74E+00 2.69E-02* 1.46E-02 4.06E+02 8.64E+01 1.58E-02* 9.86E-03 

f11 1.13E+02 3.11E+01 3.01E+01* 6.31E+00 2.14E+02 1.19E+01 4.30E+01* 1.45E+01 2.32E+02 1.05E+01 2.07E+01* 8.64E+00 

f12 1.80E+02 6.02E+00 3.31E+01* 7.86E+00 2.27E+02 1.07E+01 5.40E+01* 1.31E+01 2.59E+02 1.29E+01 3.10E+01* 1.60E+01 

f13 1.81E+02 8.85E+00 7.87E+01* 2.96E+01 2.32E+02 1.34E+01 1.08E+02* 2.03E+01 2.51E+02 1.80E+01 4.26E+01* 1.17E+01 

f14 6.64E+03 5.49E+02 2.15E+03* 3.72E+02 8.00E+03 3.05E+02 1.69E+03* 6.03E+02 8.20E+03 2.31E+02 1.64E+03* 3.39E+02 

f15 7.86E+03 3.18E+02 6.25E+03* 1.05E+03 8.42E+03 2.98E+02 7.82E+03* 6.75E+02 8.44E+03 3.17E+02 8.05E+03* 2.34E+02 

f16 2.51E+00 2.42E-01 2.47E+00 2.53E-01 2.42E+00 3.12E-01 2.33E+00 6.40E-01 2.50E+00 2.02E-01 2.41E+00 2.20E-01 

f17 1.81E+02 1.24E+01 7.07E+01* 7.54E+00 2.58E+02 8.49E+00 6.23E+01* 7.49E+00 2.75E+02 5.99E+00 5.41E+01* 5.27E+00 

f18 2.14E+02 9.07E+00 1.07E+02* 2.56E+01 2.57E+02 8.51E+00 1.66E+02* 4.58E+01 2.83E+02 1.43E+01 1.88E+02* 3.68E+01 

f19 1.54E+01 8.77E-01 3.43E+00* 1.27E+00 1.91E+01 1.76E+00 3.15E+00* 5.40E-01 2.63E+01 1.78E+00 3.29E+00* 9.81E-01 

f20 1.50E+01 1.87E-05 1.45E+01 2.65E-01 1.50E+01 2.79E-12 1.46E+01 4.91E-01 1.50E+01 9.98E-10 1.49E+01 2.25E-01 

f21 2.80E+02 4.00E+01 3.57E+02 7.03E+01 2.71E+02* 4.57E+01 3.33E+02 7.80E+01 3.70E+02 2.22E+01 2.60E+02* 4.90E+01 

f22 7.20E+03 8.85E+02 2.21E+03* 4.40E+02 8.54E+03 2.08E+02 1.83E+03 3.99E+02 8.69E+03 2.89E+02 1.76E+03* 4.33E+02 

f23 7.99E+03 2.71E+02 5.26E+03* 1.02E+03 8.50E+03 4.29E+02 6.41E+03 1.59E+03 8.71E+03 2.54E+02 7.78E+03* 7.35E+02 

f24 3.00E+02 2.04E+00 2.92E+02* 7.21E+00 3.02E+02 3.42E+00 2.99E+02* 4.11E+00 3.05E+02 3.05E+00 3.03E+02 2.88E+00 

f25 2.99E+02 2.54E+00 2.97E+02 6.56E+00 3.00E+02* 2.27E+00 3.00E+02 2.16E+00 3.00E+02 2.28E+00 3.00E+02 3.26E+00 

f26 3.71E+02 3.73E+01 3.20E+02 7.94E+01 3.95E+02 1.47E+01 3.48E+02* 7.50E+01 4.03E+02 5.31E+00 3.62E+02* 5.64E+01 

f27 1.29E+03 3.15E+01 1.22E+03 7.97E+01 1.31E+03 2.32E+01 1.31E+03* 2.95E+01 1.34E+03 2.80E+01 1.31E+03 3.49E+01 

f28 3.00E+02 0.00E+00 3.00E+02 4.69E-13 3.03E+02* 8.17E-01 6.35E+02 5.13E+02 4.99E+02 4.39E+01 3.00E+02* 0.00E+00 

Total 8  22  4  24  3  25  

Overall, mutation strategies, DE/best/1 and DE/rand/1 

were among the best mutation strategies and DE/rand/2 was 

the worst in term of solution accuracy. Furthermore, 

DE/rand/1 performed very well for unimodal problems (<1 −<5� and DE/best/1 was the dominant mutation strategy for 

composition functions (<21 − <28�. Table I summarizes the 

total number of best performances by each mutation strategy 

for �	 = 	10, 30, 50 , and 100 . For multimodal functions 

(<6 − <20� DE/best/1 and DE/rand/1 had roughly the same 

number of best performances.  



 

 

 

In the second set of experiments, we compared perfor-

mance of the best mutation strategy (DE/rand/1) against 

MDE/rand/1 (i.e. the three mutant vectors in DE/rand/1 are 

selected based on the proposed algorithm). The proposed 

method outperformed the classical DE/rand/1 for most bench-

mark problems. As the dimension increased from � = 10 

to� = 50, the performance of MDE gets better and outper-

forms the classical DE/rand/1 in most the benchmark prob-

lems (see Table III). Tables II and IV, columns 2 through 5 

show the mean best and standard deviation of DE/rand/1 and 

MDE/rand/1 for D = 30 and 100. 

In the third set of experiments, we compared performance 

of the second worst mutation strategy (DE/rand-to-best/1) 

against MDE/rand-to-best/1 (i.e. the four mutant vectors in 

DE/rand-to-best/1 are selected based on the proposed algo-

rithm). The proposed algorithm improved the performance of 

the corresponding algorithm for most of the test problems in 

all dimensions except for functions <8 and <28. In overall, 

the proposed algorithm outperformed the classical DE in 80% 

of the test functions. Tables II and IV, columns 6 to 9 show 

the mean best and standard deviation of DE/rand-to-best/1 

and MDE/rand-to-best/1 for D = 30 and 100. 

TABLE III. THE OVERALL COMPARISON OF DE AND MDE: NUMBER OF 

WINS BY EACH MUTATION STRATEGY OUT OF 28 BENCHMARK PROBLEMS 

FOR D = 10, 30, 50 AND 100. 

D rand/1 rand-to-best/1 rand/2 

DE MDE DE MDE DE MDE 

10 12 19 6 23 4 26 

30 8 22 4 24 3 25 

50 7 21 7 22 1 27 

100 12 17 6 23 2 26 

Total 39 79 23 92 10 104 

 

The last set of experiments involved the worst mutation 

strategy (DE/rand/2) against MDE/rand/2 (i.e. the five mutant

TABLE IV. COMPARISON OF THREE BINOMIAL MUTATION STRATEGIES (DE/RAND/1, DE/RAND-TO-BEST/1, AND DE/RAND/2) AGAINST THEIR 

CORRESPONDING MDE STRATEGY (D = 100). MEAN BEST AND STANDARD DEVIATION (STD DEV) OF 25 RUNS AND 10,000∙D FUNCTION CALLS ARE 

REPORTED. THE BEST ALGORITHM IS EMPHASIZED IN GREY. THE TOTAL ROW SHOWS THE NUMBER OF WINS BY EACH MUTATION STRATEGY. *  INDICATES 

THE TWO-TAILED WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL.   

F 

DE/rand/1 MDE/rand/1 DE/rand-to-best/1 MDE/rand-to-best/1 DE/rand/2 MDE/rand/2 

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. 

f1 0.00E+00 1.11E-13 0.00E+00 0.00E+00 4.41E-01 2.19E-01 0.00E+00* 1.14E-13 6.31E+03 1.15E+03 0.00E+00* 0.00E+00 

f2 2.10E+07 6.34E+06 2.21E+06* 5.83E+05 5.08E+09 8.45E+08 3.17E+06* 1.10E+06 9.89E+09 1.86E+09 1.73E+06* 5.70E+05 

f3 6.12E+08* 4.70E+08 8.11E+13 2.38E+14 1.18E+14 5.63E+13 1.41E+09* 9.08E+08 7.99E+14 4.71E+14 4.93E+08* 3.47E+08 

f4 1.51E+05 1.32E+04 5.96E+03* 1.91E+03 9.50E+05 2.40E+05 3.09E+03* 3.29E+03 9.99E+05 2.03E+05 5.56E+04* 1.74E+04 

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.13E+00 2.24E+00 0.00E+00* 5.57E-14 5.23E+03 1.05E+03 0.00E+00* 0.00E+00 

f6 1.23E+02* 3.91E+01 1.88E+02 4.37E+01 1.20E+02* 4.20E+01 1.48E+02 3.12E+01 1.54E+03 3.56E+02 1.28E+02* 3.56E+01 

f7 1.95E+02* 7.00E+01 1.11E+06 1.20E+06 5.80E+03 1.52E+03 1.82E+02* 2.51E+01 1.38E+04 4.37E+03 1.06E+02* 1.42E+01 

f8 2.13E+01* 1.92E-02 2.13E+01 1.52E-02 2.13E+01 1.68E-02 2.13E+01 1.65E-02 2.13E+01 1.58E-02 2.13E+01 2.04E-02 

f9 1.60E+02* 3.64E+00 1.60E+02 1.36E+00 1.60E+02 1.48E+00 1.60E+02 1.38E+00 1.61E+02 1.72E+00 1.60E+02 2.32E+00 

f10 8.55E-02* 4.18E-02 1.48E-01 5.97E-02 2.26E+02 4.28E+01 7.81E-02* 3.81E-02 1.17E+04 1.74E+03 6.68E-02* 4.29E-02 

f11 8.76E+01* 5.11E+01 3.10E+02 5.74E+01 9.52E+02 5.14E+01 4.36E+02* 6.31E+01 1.16E+03 4.68E+01 1.75E+02 3.09E+01 

f12 8.49E+02 2.45E+01 3.50E+02* 6.26E+01 1.03E+03 3.26E+01 5.70E+02* 1.17E+02 1.31E+03 6.51E+01 5.36E+02* 3.36E+02 

f13 8.59E+02 2.68E+01 5.87E+02* 4.93E+01 1.03E+03 3.49E+01 1.02E+03 1.42E+02 1.31E+03 7.51E+01 9.04E+02* 3.06E+01 

f14 2.54E+04 2.20E+03 1.34E+04* 6.80E+02 3.33E+04 2.93E+02 1.19E+04* 1.48E+03 3.33E+04 6.22E+02 1.27E+04* 1.60E+03 

f15 3.24E+04 4.62E+02 3.17E+04* 3.12E+02 3.32E+04 4.24E+02 3.27E+04 5.84E+02 3.36E+04 3.24E+02 3.28E+04* 4.31E+02 

f16 3.92E+00 3.07E-01 4.00E+00 2.29E-01 3.95E+00 2.35E-01 3.90E+00 2.19E-01 4.08E+00 1.43E-01 4.06E+00 2.11E-01 

f17 6.95E+02 5.43E+01 5.96E+02 1.21E+02 1.09E+03 2.45E+01 5.18E+02* 5.45E+01 1.48E+03 5.79E+01 3.93E+02* 4.58E+01 

f18 9.28E+02* 2.46E+01 9.99E+02 3.88E+01 1.11E+03 2.68E+01 1.11E+03 5.67E+01 1.49E+03 6.64E+01 9.76E+02* 1.98E+01 

f19 6.93E+01 4.76E+00 5.77E+01* 1.30E+01 9.54E+01 4.47E+00 6.18E+01* 2.47E+01 4.12E+05 5.79E+05 2.46E+01* 3.83E+00 

f20 5.00E+01 1.49E-10 5.00E+01* 8.84E-04 5.00E+01 0.00E+00 5.00E+01 0.00E+00 5.00E+01 8.95E-14 5.00E+01 9.25E-13 

f21 3.50E+02* 5.00E+01 6.14E+03 3.37E+03 5.79E+02 1.23E+02 3.80E+02* 4.00E+01 3.92E+03 2.70E+02 3.70E+02* 4.58E+01 

f22 2.57E+04 1.32E+03 1.40E+04* 2.18E+03 3.40E+04 4.34E+02 1.17E+04* 1.86E+03 3.43E+04 3.29E+02 1.21E+04* 1.02E+03 

f23 3.29E+04 6.55E+02 3.18E+04* 6.39E+02 3.43E+04 5.87E+02 3.37E+04 5.83E+02 3.48E+04 7.14E+02 3.40E+04* 3.34E+02 

f24 6.08E+02 4.11E+00 6.06E+02 8.09E+00 6.13E+02 4.22E+00 6.12E+02 4.46E+00 6.19E+02 5.22E+00 6.12E+02* 3.94E+00 

f25 6.04E+02 2.36E+00 6.03E+02 3.43E+00 6.04E+02* 2.50E+00 6.09E+02 3.31E+00 6.08E+02 3.46E+00 6.09E+02 4.28E+00 

f26 7.08E+02 4.69E+00 7.04E+02 5.36E+00 7.14E+02 5.31E+00 7.09E+02 3.51E+00 7.24E+02 4.07E+00 7.06E+02* 6.08E+00 

f27 4.34E+03 4.00E+01 4.33E+03 4.55E+01 4.42E+03 5.19E+01 4.38E+03 5.68E+01 4.51E+03 4.39E+01 4.40E+03* 4.05E+01 

f28 3.62E+03* 1.07E+03 2.08E+04 7.23E+03 5.19E+03* 7.74E+01 6.89E+03 1.98E+03 1.23E+04 1.85E+03 3.49E+03* 9.02E+02 

Total 2   26   6   23   2   26   

vectors in DE/rand-to-best/1 are selected based on the pro-

posed algorithm). The corresponding MDE strategy outper-

formed the classical mutation strategy almost in all bench-

mark problems and in all tested dimensions. It has shown the 

most improvement as compared to MDE and the correspond-

ing other mutation strategies and this can be attributed to the 

fact that DE/rand/2 has five randomly (blindly) selected mu-

tant vectors instead of three mutant vectors in DE/rand/1. Ta-

bles II and IV, columns 10 to 13 show the mean best and 

standard deviation of DE/rand/2 and MDE/rand/2 for D = 30 

and 100. Figure 1 illustrates the performance comparison be-

tween traditional DE and MDE for the three mutation strate-

gies when D = 30 and 100.  These curves show MDE con-

verges faster than the conventional DE in all mutation strate-

gies. Table III summarizes the overall performance of MDE 

for all tested dimensions (D = 10, 30, 50 and 100). Based on 

the observed results in four sets of experiments, the results 

can be summarized as follows: 



 

 

 

• As the dimension increases the performance of MDE gets 

better in term of the solution accuracy in most of the ex-

perimented DE mutation strategies.  This suggests that 

MDE may be suitable for large-scale global optimization 

problems.  

• The performance of MDE based mutation strategies were 

better than those of the classical mutation strategies. This 

suggests the proposed merit-based computation has the 

capability of improving the performance of algorithms in-

volving some sort of selection strategy (at least it would 

be computationally “cheaper” than other selection strate-

gies). 

• The elitism of an individual should be measured based on 

its performance, not only at the current generation (MDE 

short-term performance) but also the overall performance 

throughout the generations (MDE long-term perfor-

mance). 

• As the number of randomly selected vectors increases 

(e.g. three random vectors in DE/rand/1 to five random 

vectors in DE/rand/2) the performance of the correspond-

ing MDE algorithm showed better improvement. This 

suggests the proposed merit-based selection strategy can 

significantly increase the performance of algorithms with 

many random mutant vectors. 

VI. CONCLUSION 

In this paper, we proposed a novel merit-based mutation 

strategy for DE (MDE). MDE uses short-term performance 

(the performance of each individual in the current generation) 

and long-term performance (the performance of each individ-

ual throughout the generations) to minimize the possible neg-

ative effects of a pure “blind” selection strategy employed by 

the traditional DE mutation strategies. The performance of 

MDE was compared to three traditional DE mutation strate-

gies namely, DE/rand/1, DE/rand-to-best/1 and DE/rand/2. 

Experimental results on 28 benchmark problems showed that 

the performance of the traditional DE mutations can signifi-

cantly be improved by MDE. 

Almost in all test problems, the proposed algorithm outper-

formed the parent traditional DE mutation strategy in term of 

solution accuracy. As the number of randomly selected mu-

tant vectors increased (e.g., three random mutant vectors in 

DE/rand/1 to five mutant random vectors in DE/rand/2) the 

performance of the corresponding MDE algorithm for 

DE/rand/2 showed better improvement as compared to MDE 

for DE/rand/1. This shows that as the number of randomly 

selected vectors increase the solution accuracy of DE de-

grades and merit-based selection strategy can greatly improve 

the performance.   

For future work, first, we would like to investigate the im-

pact of short-term to long-term performance weights (in the 

current proposal the short-term and the long-term have the 

same impact factor in the selection process). Second, we 

would like to investigate the impact of using only � genera-

tions’ performance as supposed to all generations. Last but 

not least, we would like to extend the merit-based selection 

strategy to evolutionary multi-objective algorithms involving 

random, rank or elite selection mechanism. 
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