

MDE: Differential Evolution with Merit-based

Mutation Strategy

Amin Ibrahim1, Shahryar Rahnamayan1, Miguel Vargas Martin2

University of Ontario Institute of Technology, Oshawa, ON, Canada

amin.ibrahim@uoit.ca, shahryar.rahnamayan@uoit.ca, miguel.vargasmartin@uoit.ca
1Faculty of Electrical, Computer, and Software Engineering, 2Faculty of Business and IT

Abstract— Currently Differential Evolution (DE) is arguably

the most powerful and widely used stochastic population-based

real-parameter optimization algorithm. There have been variant

DE-based algorithms in the literature since its introduction in

1995. This paper proposes a novel merit-based mutation strategy

for DE (MDE); it is based on the performance of each individual

in the past and current generations to improve the solution ac-

curacy. MDE is compared with three commonly used mutation

strategies on 28 standard numerical benchmark functions intro-

duced in the IEEE Congress on Evolutionary Computation

(CEC-2013) special session on real parameter optimization. Ex-

perimental results confirm that MDE outperforms the classical

DE mutation strategies for most of the test problems in terms of

convergence speed and solution accuracy.

Keywords – Global optimization, Differential evolution, Evolu-

tionary algorithms, P-metaheuristics, Merit-based selection.

I. INTRODUCTION

OWADAYS, real-world applications are increasingly com-

plex and more encompassing, in the sense that more de-

cision variables are used to model complex situations and

more input data and parameters are available to capture the

complexity of the problems. Since finding exact solutions in

these applications still poses a real challenge despite the im-

pact of recent advances in computer technology, there are nu-

merous metaheuristics capable of finding “good” solutions in

a “reasonable” time. Due to the inherent complexities and

dynamics we have in nature, and its ability to tackle with its

own problems, nature is the main source of inspiration for

solving our complex problems in science and engineering [1].

Metaheuristics are high-level strategies for exploring

search spaces by using variant search methods. Their main

goal is efficiently exploring the search space in order to find

optimal (or near to optimal) solutions in reasonable time.

They solve problems which are “hard” to solve by exhaustive

exploring. Metaheuristics have been used in many applica-

tions ranging from software engineering, energy systems de-

sign, bioinformatics, telecommunication, finance and others.

A description of well- known metaheuristics can be found in

[2, 3].

Metaheuristics can be divided into two main categories,

namely, population-based metaheuristics (P-metaheuristics)

and single solution-based metaheuristics (S-metaheuristics).

Basically, they differ by the number of tentative candidate so-

lutions which are involved in every iteration. S-metaheuristics

start with a single initial solution which is replaced by a more

accurate solution at every iteration. These types of optimiza-

tion methods offer strong local search properties known as

exploitation properties - however, they get trapped by local

optima.

In contrast, P-metaheuristics use an entire set of candidate

solutions called population which are improved at every iter-

ation. The first step in P-metaheuristics is the initialization of

the population. Next is the generation of current population.

Then, new population is selected from previous and current

population, based on their corresponding fitness values. Fi-

nally, this process is repeated until stopping criteria are met.

The main advantage of P-metaheuristics is that the diversifi-

cation of the population aids the search properties known as

exploration properties.

Almost all P-metaheuristics are nature-inspired, in which

multiple agents interact to solve or accomplish a given task.

Though arguably nature-inspired algorithms are still at their

early stages, many have shown a great potential in solving

very complicated problems with diverse applications in engi-

neering, business, economics, and communication networks.

For example, EAs are nature-inspired population-based meth-

ods taken from the biological evolution of living organisms to

adapt to their ecosystem.

The core component of any EA is the selection strategy [4].

The selection strategy determines which parents are selected

for mating (reproduction) in the hope that they would generate

better offspring (i.e. individuals with a bias toward better fit-

ness). There are mainly four selection strategies in EA: rou-

lette wheel selection, random, rank-based, and tournament-

based selection. The roulette wheel selection assigns each in-

dividual a selection probability that is proportional to its rela-

tive fitness and as a result the fittest individuals will introduce

a bias that may cause a premature convergence and a loss of

diversity. Moreover, if the objective is minimization rather

than maximization, a transformation is required. When all in-

dividuals are equally fit, this strategy is similar to random se-

N

978-1-4799-4461-3/14/$31.00 ©2014 IEEE

lection. The tournament selection strategy selects � fittest in-

dividuals from � randomly selected individuals based on

tournament [5]. This strategy is subject to arbitrary stochastic

effects in the same way as roulette-wheel selection - there is

no guarantee that the best individual survive through the se-

lection process.

The rank-based selection strategy is similar to roulette

wheel selection however an individual assigned a rank instead

of the fitness value. This imposes a sorting overhead on the

algorithm, but this is usually negligible compared to the fit-

ness evaluation time. All the above-mentioned selection strat-

egies are based on individual’s current performance and ig-

nore past achievements of an individual throughout the gen-

erations.

This paper proposes a novel evolutionary probabilistic se-

lection strategy called merit-based selection strategy to miti-

gate the above-mentioned and other problems associated with

widely used selection strategies in EAs. The rest of the paper

is organized as follows. Section II a description of DE algo-

rithm. Section III provides a comprehensive review of the

state-of-the-art work on improving the DE algorithm. Section

IV provides the technical description of the proposed algo-

rithm, called merit-based mutation strategy for DE (MDE).

Section V presents the benchmark functions utilized in our

experiments, and experimental results and analysis. Finally,

the paper is concluded in Section VI.

II. DIFFERENTIAL EVOLUTION: A BRIEF

INTRODUCTION

DE was introduced by Storn and Price [6] as a global effi-

cient optimization algorithm. It attempts to solve a problem

by selecting a better candidate solution based on its fitness

value. Similar to all other P-methaueristcs, DE starts with a

population of NP D-dimensional parameter vectors represent-

ing initial candidate solutions.

Assume that solution ��,�	 is a set of D-variable which is

represented by a �-dimensional variable row vector. ��,�	, 	 = 1,2, … , ��,

where � indicates the generation and �� is population size.

The initial population (�	 = 	0) is generated uniformly ran-

domly as follows:

��,�,� = 	��,��� + �����,��0,1� ∙ ���,�� − ��,���", (1)

where �����,��0,1� is a uniform random number between 0

and 1; ��,�� and ��,��� are variable boundaries.

A. Mutation

For each target vector	��,�	, a mutant vector (noisy vector) #�,�	is generated using certain mutation strategy. The general

DE mutation and crossover strategy is denoted by DE/X/Y/Z;

where X is the vector to be mutated; Y is the number of differ-

ence vectors used; and Z is the crossover scheme which is ei-

ther binomial or exponential. The most commonly used mu-

tation strategies are the followings:

DE/best/1: #�,� = �$%&',� + (��$,� − �),�" (2)

DE/rand/1: #�,� = 	��,� + 	(��$,� − �),�" (3)

DE/rand-to-

best/1:
#�,� = 	��,� + 	(��$%&',� − �$,�"+ (��),� − �*,�" (4)

DE/best/2: #�,� = �$%&',� + 	(���,� − �$,�"+ (��),� − �*,�" (5)

DE/rand/2: #�,� = ��,� + 	(��$,� − �),�"+ (��*,� − �%,�" (6)

where �$%&',� is the best individual vector in term of fitness

value; and 	��,� ,	�$,� , �),� , �*,� and �%,� are different ran-

dom vectors chosen from the current population, 	 ≠ � ≠ 		,	 ≠ -	 ≠ �	 ≠ .

The population size should be	�� ≥ 4 and (∈ [0, 2] is a

real constant number which controls the diversification of the

solution vector.

B. Crossover

There are mainly two crossover strategies of DE: binomial

and exponential. In the binomial crossover the trial vector is

determined by following equation:

 4�,�56 = �76�,�56, 78�,�56, … , 79�,�56�, (7)

where

 7��,�56 =	 :;��,�56		<	����� 	≤ >?	@�		A = B
���,� 																									@Cℎ.�E	F.	 (8)

For A = 1,2, … , � , ����� ∈ [0, 1] , >? ∈ [0,1] and B	 ∈
{1, 2, … , �} is a random parameter index which guarantees

that 4�,�56 gets at least one variable from #�,�56.

On the other hand, in the exponential crossover the trial

vector is generated using two-point modulo operation. The

first point � ∈ [1, �] is selected randomly to be the starting

point in the target vector, where the exchange of variables

with the mutant vector and the second point I ∈ [1, �] deter-

mines the contribution (i.e., of variables) of the mutant vector.

The starting position of crossover is selected from the mutant

vector until a random number surpasses the >? value or the

number of consecutive variables is equal to the random point

selected, then the remaining vectors from the target vector.

 7��,�56
= 	J;��,�56	<@�	A = 	 〈�〉9, 〈� + 1〉9, … , 〈� + I − 1〉9���,� 									<@�	�MM	@Cℎ.�	A ∈ [1, �]	

(9)

where the 〈 〉� denote a modulo function with modulus �;
and I is generated according to the following pseudo-code: I	 = 	0	

DO

 I = I + 1

WHILE (�����0,1� 	< 	>?	P��	I < �)

C. Selection

The following greedy selection is used to determine which

vector	{4�,� , ��,�} should be a member of the next population

based on cost value.

 ��,�56 =	J4�,�56				<	<�4�,�56" ≤ 	<���,�"				��,�																										QCℎ.�	E	F. (10)

III. RELATED WORKS

Due to the simplicity and effectiveness of DE, many re-

searchers are focusing on its improvement and this resulted

many variants of the basic algorithm with improved perfor-

mance. One variant of the DE algorithm involve slight mod-

ification of the mutation and crossover strategies. For exam-

ple, Ali and Pant [7] proposed a Cauchy mutation strategy to

get a better trade-off between the convergence rate and ro-

bustness. They have used a failure counter to track the pro-

gress of individuals so that the individuals that fail to show

any improvement in the function value for a successive num-

ber of generations are subject to Cauchy mutation with the

hope of pulling them out of a local optimum.

Similarly, Islam et al. [8] proposed mutation and crossover

strategy similar to DE/current-to-best/1 scheme to overcome

the premature convergence and stagnation problems observed

in the classical DE. The proposed mutation strategy selects

the best vector from a dynamic group of R% of the randomly

selected population members. Moreover, their crossover strat-

egy uses a vector that is randomly selected from the p top-

ranking vectors according to their objective values in the cur-

rent population (instead of the target vector) to promote the

inclusion of generic information from the elite individuals in

the current generation. The parameter p is linearly reduced

with generations to maintain the exploration and exploitation

stages by gradually downsizing the elitist portion of the pop-

ulation.

Gong and Cai [9] proposed rank-based mutation operators

for the DE algorithm, where parents are selected based on

their rankings. In each iteration, parents are assigned their cor-

responding ranking according to their fitness. The mutant vec-

tors are then selected based on selection probability, which is

proportional to the rankings of parents in the current popula-

tion. This strategy imposes a sorting overhead on the algo-

rithm, but this is usually negligible compared to the fitness

evaluation time. However, it ignores past achievements (his-

tory) of individuals throughout the generations, thereby losing

good historical information of individuals that can lead to bet-

ter convergence.

Epitropakis et al. [10] proposed proximity-based DE where

mutant vectors are selected from the nearest neighbors of the

target vector instead of random vectors. The neighbor vectors

are selected based on probabilities inversely proportional to

the distance from the mutated individual. It has shown to re-

duce the excessive exploratory nature of DE and promote ex-

ploitation in some areas of the search space. The key role of

the proximity framework is to exploit possible clustering

structure of the population over the problem’s minima and in-

corporate this information in the evolution phase of the algo-

rithm. More on modified mutation and crossover strategies of

DE can be found in [11] – [14].

Other variants of DE include adaptive parameter control

and embedding new components in DE. Zhang and Sanderson

[15] proposed a parameter adaptation strategy (called JADE)

by evolving the mutation factors and crossover probabilities

based on their historical record of success to eliminate the

need of prior knowledge of the relationship among the param-

eter settings and the characteristics of optimization problems.

The mutation factor for each individual is independently gen-

erated according to the Cauchy distribution with location up-

dated based on the Lehmer mean in each generation.

Similarly, Brest et al. [16] proposed a self-adaptive ap-

proach for DE control parameters in attempt to determine the

best values of F and CR for any given problem. Their ap-

proach extends the representation of each individual in the

population with F and CR values to go through the evolution

process in hope that the control parameters lead to better in-

dividuals.

Rahnamayan et al. [17] have proposed an opposition-based

DE (ODE) based on opposition-based learning and generation

jumping in order to accelerate the convergence rate of DE.

The population initialization stage of ODE involves generat-

ing random solutions as well as the opposite population and,

subsequently selecting the fittest individuals from the union

of these two sets. Similarly, based on generation jumping rate,

opposite of the current population is generated within reduced

search space and only the elite members of the population ad-

vance to the next generation.

IV. PROPOSED ALGORITHM: MDE

The idea of merit-based selection in general is not new – it

has been used in professional sports for determining entry and

seeding in all tournaments. In professional sports, merit-based

ranking is done based on a ranking period, usually the imme-

diate past 52 weeks performances of each individual. This ap-

proach gives a chance to those individuals who have not done

well (because of injury or “luck”) at the current stage of the

tournament.

In this section, we discuss the main concepts behind a merit-

based mutation strategy for differential evolution (MDE) al-

gorithm. In nature, prominent species retain and utilize valu-

able past and current information to improve their fitness and

the fitness of future generations (offspring). Similarly, MDE

utilizes past and current performances of individuals to guide

the search process. MDE is similar to the classical DE except

that at the mutation stage the mutant vectors are selected

based on their “merit” (i.e. past and current performance). The

proposed scheme consists of two memories: the short-term

and the long-term memories. The short-term memory stores

individuals’ current improvement (objective space) and the

long-term memory stores the overall improvement made by

each individual.

A. Short-term Performance

The short-term performance of MDE assigns performance

weights proportional to each individual’s improvement. They

are computed as follows (for maximization problem the less

than “<” operator should be replaced with greater than “>”

operator):

T�U = J<���VW%X" − <���YZWW"							<		<���YZWW" < <���[W%X"
0																																													@Cℎ.�E	F. (11)

where 	 = {1,2, … , ��} (��: population size) and the selec-

tion probability is defined as:

\�U = T�U∑ T̂U_[^`6
 (12)

B. Long-term Performance

The main goal of the long-term performance measure is to

eliminate the bias towards individuals which do not show any

or little improvement in the current generation but have

shown significant contribution in terms of fitness improve-

ment throughout generations. Thus, the long-term weight

stores the total performance of each individual in the past gen-

erations as well as the current generation.

At the initialization stage, the long-term weights of MDE

computed as follows:

T�a

= ���[<��6�, <��8�,… , <��_[�] − �	�	[<��6�, <��8�,… , <��_[�]��
(13)

The main purpose of Eq. (13) is to avoid favouritism towards

the best individuals at the initialization stage that may cause

premature convergence. The division by �� in Eq. (13) is

avoid T�a from being the dominating value when individuals’

future improvements are significantly smaller than	T�a .

The weight factors in each generation are updated as fol-

lows (for maximization problem the less than “<” operator

should be replaced with greater than “>” operator):

T�a = JT�a +T�U 							<		<���YZWW� < <���[W%X�
T�a																														@Cℎ.�E	F. (14)

where 	 = {1,2, … , ��} and the selection probability is de-

fined as:

\�a = T�a∑ T â_[^`6
 (15)

C. Mutation

The classical mutation strategies in Eqs. (2) to (6) involve

selecting several mutant vectors randomly. However in MDE

the mutant vectors are selected based on a selection pressure

probability defined as below:

\� = 1
2 [\�a + \�U]	 (16)

where \�aand \�U the long and short-term selection probabili-

ties of the 	'b individual. Since the overall selection pressure

is proportional to \�aand \�U, individuals with little or no im-

provement at the current stage would still have a chance to be

selected based on their past performance. Algorithm 1 shows

the pseudocode of the proposed MDE algorithm.

D. Advantages of the Proposed Algorithm

There are several technical and performance advantages of

the proposed MDE algorithm over traditional selection strat-

egies used in EA.

• The fitness of an individual is measured based on im-

provements over the short-term and the long-term

(i.e. current performance is not the solely criteria for

elitism). This modification allows individuals with

little or no improvement at the current stage to still

have a chance to be selected based on their past per-

formance. This is similar to the ranking/point

method used in professional sports such as tennis

and golf.

• MDE is computationally lite; the complexity of com-

puting the short-term and long-term performances is

Q����- it eliminates the need of sorting required by

some of the selection strategies such as elitism

and/or rank-based selection methods. Note that

Q���� storage is required this procedure.

• Unlike the traditional proportional fitness initializa-

tion, MDE initialization assigns equal weights to all

individuals. This would not lead to favouritism to-

wards the best individuals at the initialization stage

which may cause premature convergence.

• Since MDE uses the improvements made by individ-

uals (always positive) throughout the generation, it

does not need any transformation or scaling required

by roulette-wheel method when the objective func-

tion values are large, negative, or the objective is

minimization rather than maximization.

Algorithm 1: Merit-based Mutation Strategy for DE (MDE)

1. Generate uniformly distributed random population ��

/* Evaluate current population fitness */

2. #�M� = <���� <@�		 = 1, 2, … , ��
/* Initialize the short-term and long term-performance */

3. T�U = 0		<@�		 = 1, 2,… ,�� 	
4. If ����;�M� > 	�	��;�M�		
5. T�a = �� �X�d�	–	����X�d�	

_[<@�		 = 1, 2, … , ��	
6. Else	
7. T�a = 1	<@�		 = 1, 2, … , ��	
8. End If	

/* Initialize selection probability */

9. \� = 1/��	 <@�		 = 1, 2,… ,��

10. While �(>	 < 	gP�_hY	
11. For 	 = 1	C@	��	
12. Select mutant vectors based on \� /*Roulette Wheel*/	
13. Apply mutation /* One of the mutation strategy from

eqns. (2) to (6) */	
14. Apply binomial crossover /* Eqn. (8) */	
15. /*Update the short-term and long-term performance*/ 	
16. If <�4�� < <����	
17. ��i = 4�	
18. T�U = |<�4�� − <����| 	
19. T�a = T�a +T�U 	
20. Else	
21. ��i = �� 	
22. T�& = 0	
23. End If	
24. End For	

 /*Update selection probability*/	
25. For 	 = 1	C@	��	
26. \� = 6

8 [T�&/F7��TU�] + 6
8 [T�a:/F7��Ta�]	

27. End For	
28. �i = �	
29. End While

V. EXPERIMENTAL SETTINGS AND RESULTS

A. Benchmark Functions

In order to test the quality of the proposed algorithm, we

have used 28 well-known numerical benchmark problems

taken from the IEEE Congress on Evolutionary Computation

(CEC-2013) special session on real parameter optimization

[20]. The definition of the benchmark functions and their

global in [20]. Test problems <6 –	<l are shifted and/or rotated

unimodal functions, problems <6 – 	<20 are multimodal

shifted and/or rotated continuous functions (except <13), and

problems <21 – 	<28 are composition functions (a function

composed of three or more function from problems <1 −<20. The search range for all the problems are	[−100, 100]9.

All the test functions used in this paper should be minimized.

(a) <q, �	 = 	30

(b) <q, �	 = 	100

(c) <6r, �	 = 	30

(d) <6r, �	 = 	100

(e) <88, �	 = 	30

(f) <88, �	 = 	100

Fig. 1. Sample graphs (best solution versus NFCs) for performance comparison between DE and MDE for D = 30 and D = 100.

B. Parameter Settings

The classical DE has two problem-dependent control pa-

rameters (and >? which need to be tuned by the user. How-

ever, in order to maintain a consistent and fair comparison,

the parameter settings of DE and MDE are kept the same for

all experiments. In addition the parameters settings used in

this study are extensively utilized in the literature. Parameter

settings for all conducted experiments are as follows:

Administrator
Highlight

• Population size, �V = 100 [15]-[17]

• Crossover factor, >? = 0.9 [6], [15], [18], [19]

• Mutation scaling factor, (= 0.5 [6], [15], [18]

• Maximum Function calls, gP�_hY = 10,000 ∗ �

To evaluate the performance of the proposed algorithm, we

have used an error measure, defined as |<��� − <��∗�| where �∗ is the global optimum of the benchmark function and � is

the best solution achieved after 10,000 ∗ � function evalua-

tions, where � is the dimensionality of the problem. Further-

more, all algorithms were executed 25 times independently

and the mean and standard deviation of each algorithm were

recorded.

C. Experimental Results and Analysis

Four series of experiments have been conducted to evaluate

the performance of the proposed algorithm. Wilcoxon’s rank-

sum statistical [21] is conducted at the 5% significance level

in order to evaluate the statistical significance the obtained

results. Furthermore, error values less than 10-8 are reported

as zero. In the first experiment, we have compared the perfor-

mance of five commonly used traditional mutation strategies

on the 28 benchmark problems to select the best and the worst

mutation strategies for these test problems. The experiments

consisted of having respective dimensionalities of 10, 30, 50,

and 100.

TABLE I. THE NUMBER OF WINS BY EACH MUTATION STRATEGY OUT OF

28 BENCHMARK PROBLEMS FOR D = 10, 30, 50 AND 100.

D DE/best/1 DE/rand/1
DE/rand-

to-best/1
DE/best/2 DE/rand/2

10 14 7 2 5 3

30 10 12 2 4 0

50 11 13 2 2 0

100 11 14 1 2 0

Total 46 46 7 13 3

TABLE II. COMPARISON OF THREE BINOMIAL MUTATION STRATEGIES (DE/RAND/1, DE/RAND-TO-BEST/1, AND DE/RAND/2) AGAINST THEIR

CORRESPONDING MDE STRATEGY (D = 30). MEAN BEST AND STANDARD DEVIATION (STD DEV) OF 25 RUNS AND 10,000∙D FUNCTION CALLS ARE

REPORTED. THE BEST ALGORITHM IS HIGHLIGHTED IN GREY. THE TOTAL ROW SHOWS THE NUMBER OF WINS BY EACH MUTATION STRATEGY. * INDICATES

THE TWO-TAILED WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL.

 F

DE/rand/1 MDE/rand/1 DE/rand-to-best/1 MDE/rand-to-best/1 DE/rand/2 MDE/rand/2

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.72E-04 5.85E-04 0.00E+00* 6.82E-14 3.61E+00 1.04E+00 0.00E+00* 0.00E+00

f2 1.13E+06 5.65E+05 1.31E+05* 6.17E+04 5.83E+07 1.59E+07 4.23E+05* 2.45E+05 2.61E+08 6.31E+07 3.27E+05* 2.07E+05

f3 4.31E-01* 1.07E+00 8.49E+07 8.92E+07 1.60E+11 1.42E+11 1.07E+07* 1.62E+07 8.95E+11 3.14E+11 5.86E+06* 8.27E+06

f4 1.45E+03 6.76E+02 2.27E+02* 5.82E+01 7.06E+04 2.99E+04 2.63E+01* 1.52E+01 1.94E+05 4.61E+04 3.73E+02* 1.53E+02

f5 0.00E+00 5.68E-14 0.00E+00 0.00E+00 7.48E-02 2.51E-02 0.00E+00* 7.96E-14 3.05E+01 8.98E+00 0.00E+00* 0.00E+00

f6 1.65E+01* 1.22E+00 1.94E+01 1.11E+00 2.09E+01 6.96E-01 4.06E+00* 1.25E+00 3.42E+01 3.13E+00 3.94E+00* 7.75E-01

f7 3.64E-01* 2.41E-01 5.96E+01 1.72E+01 5.69E+02 1.05E+02 8.67E+01* 2.31E+01 1.36E+03 3.09E+02 3.86E+01* 2.51E+01

f8 2.09E+01* 4.74E-02 2.10E+01 5.04E-02 2.09E+01 5.63E-02 2.10E+01 2.74E-02 2.10E+01 3.92E-02 2.10E+01 4.62E-02

f9 3.91E+01 1.34E+00 2.89E+01* 6.98E+00 3.97E+01 9.69E-01 3.93E+01* 1.21E+00 3.88E+01 1.04E+00 3.97E+01 1.01E+00

f10 5.92E-03* 5.53E-03 5.32E-02 2.41E-02 8.94E+00 3.74E+00 2.69E-02* 1.46E-02 4.06E+02 8.64E+01 1.58E-02* 9.86E-03

f11 1.13E+02 3.11E+01 3.01E+01* 6.31E+00 2.14E+02 1.19E+01 4.30E+01* 1.45E+01 2.32E+02 1.05E+01 2.07E+01* 8.64E+00

f12 1.80E+02 6.02E+00 3.31E+01* 7.86E+00 2.27E+02 1.07E+01 5.40E+01* 1.31E+01 2.59E+02 1.29E+01 3.10E+01* 1.60E+01

f13 1.81E+02 8.85E+00 7.87E+01* 2.96E+01 2.32E+02 1.34E+01 1.08E+02* 2.03E+01 2.51E+02 1.80E+01 4.26E+01* 1.17E+01

f14 6.64E+03 5.49E+02 2.15E+03* 3.72E+02 8.00E+03 3.05E+02 1.69E+03* 6.03E+02 8.20E+03 2.31E+02 1.64E+03* 3.39E+02

f15 7.86E+03 3.18E+02 6.25E+03* 1.05E+03 8.42E+03 2.98E+02 7.82E+03* 6.75E+02 8.44E+03 3.17E+02 8.05E+03* 2.34E+02

f16 2.51E+00 2.42E-01 2.47E+00 2.53E-01 2.42E+00 3.12E-01 2.33E+00 6.40E-01 2.50E+00 2.02E-01 2.41E+00 2.20E-01

f17 1.81E+02 1.24E+01 7.07E+01* 7.54E+00 2.58E+02 8.49E+00 6.23E+01* 7.49E+00 2.75E+02 5.99E+00 5.41E+01* 5.27E+00

f18 2.14E+02 9.07E+00 1.07E+02* 2.56E+01 2.57E+02 8.51E+00 1.66E+02* 4.58E+01 2.83E+02 1.43E+01 1.88E+02* 3.68E+01

f19 1.54E+01 8.77E-01 3.43E+00* 1.27E+00 1.91E+01 1.76E+00 3.15E+00* 5.40E-01 2.63E+01 1.78E+00 3.29E+00* 9.81E-01

f20 1.50E+01 1.87E-05 1.45E+01 2.65E-01 1.50E+01 2.79E-12 1.46E+01 4.91E-01 1.50E+01 9.98E-10 1.49E+01 2.25E-01

f21 2.80E+02 4.00E+01 3.57E+02 7.03E+01 2.71E+02* 4.57E+01 3.33E+02 7.80E+01 3.70E+02 2.22E+01 2.60E+02* 4.90E+01

f22 7.20E+03 8.85E+02 2.21E+03* 4.40E+02 8.54E+03 2.08E+02 1.83E+03 3.99E+02 8.69E+03 2.89E+02 1.76E+03* 4.33E+02

f23 7.99E+03 2.71E+02 5.26E+03* 1.02E+03 8.50E+03 4.29E+02 6.41E+03 1.59E+03 8.71E+03 2.54E+02 7.78E+03* 7.35E+02

f24 3.00E+02 2.04E+00 2.92E+02* 7.21E+00 3.02E+02 3.42E+00 2.99E+02* 4.11E+00 3.05E+02 3.05E+00 3.03E+02 2.88E+00

f25 2.99E+02 2.54E+00 2.97E+02 6.56E+00 3.00E+02* 2.27E+00 3.00E+02 2.16E+00 3.00E+02 2.28E+00 3.00E+02 3.26E+00

f26 3.71E+02 3.73E+01 3.20E+02 7.94E+01 3.95E+02 1.47E+01 3.48E+02* 7.50E+01 4.03E+02 5.31E+00 3.62E+02* 5.64E+01

f27 1.29E+03 3.15E+01 1.22E+03 7.97E+01 1.31E+03 2.32E+01 1.31E+03* 2.95E+01 1.34E+03 2.80E+01 1.31E+03 3.49E+01

f28 3.00E+02 0.00E+00 3.00E+02 4.69E-13 3.03E+02* 8.17E-01 6.35E+02 5.13E+02 4.99E+02 4.39E+01 3.00E+02* 0.00E+00

Total 8 22 4 24 3 25

Overall, mutation strategies, DE/best/1 and DE/rand/1

were among the best mutation strategies and DE/rand/2 was

the worst in term of solution accuracy. Furthermore,

DE/rand/1 performed very well for unimodal problems (<1 −<5� and DE/best/1 was the dominant mutation strategy for

composition functions (<21 − <28�. Table I summarizes the

total number of best performances by each mutation strategy

for �	 = 	10, 30, 50 , and 100 . For multimodal functions

(<6 − <20� DE/best/1 and DE/rand/1 had roughly the same

number of best performances.

In the second set of experiments, we compared perfor-

mance of the best mutation strategy (DE/rand/1) against

MDE/rand/1 (i.e. the three mutant vectors in DE/rand/1 are

selected based on the proposed algorithm). The proposed

method outperformed the classical DE/rand/1 for most bench-

mark problems. As the dimension increased from � = 10

to� = 50, the performance of MDE gets better and outper-

forms the classical DE/rand/1 in most the benchmark prob-

lems (see Table III). Tables II and IV, columns 2 through 5

show the mean best and standard deviation of DE/rand/1 and

MDE/rand/1 for D = 30 and 100.

In the third set of experiments, we compared performance

of the second worst mutation strategy (DE/rand-to-best/1)

against MDE/rand-to-best/1 (i.e. the four mutant vectors in

DE/rand-to-best/1 are selected based on the proposed algo-

rithm). The proposed algorithm improved the performance of

the corresponding algorithm for most of the test problems in

all dimensions except for functions <8 and <28. In overall,

the proposed algorithm outperformed the classical DE in 80%

of the test functions. Tables II and IV, columns 6 to 9 show

the mean best and standard deviation of DE/rand-to-best/1

and MDE/rand-to-best/1 for D = 30 and 100.

TABLE III. THE OVERALL COMPARISON OF DE AND MDE: NUMBER OF

WINS BY EACH MUTATION STRATEGY OUT OF 28 BENCHMARK PROBLEMS

FOR D = 10, 30, 50 AND 100.

D rand/1 rand-to-best/1 rand/2

DE MDE DE MDE DE MDE

10 12 19 6 23 4 26

30 8 22 4 24 3 25

50 7 21 7 22 1 27

100 12 17 6 23 2 26

Total 39 79 23 92 10 104

The last set of experiments involved the worst mutation

strategy (DE/rand/2) against MDE/rand/2 (i.e. the five mutant

TABLE IV. COMPARISON OF THREE BINOMIAL MUTATION STRATEGIES (DE/RAND/1, DE/RAND-TO-BEST/1, AND DE/RAND/2) AGAINST THEIR

CORRESPONDING MDE STRATEGY (D = 100). MEAN BEST AND STANDARD DEVIATION (STD DEV) OF 25 RUNS AND 10,000∙D FUNCTION CALLS ARE

REPORTED. THE BEST ALGORITHM IS EMPHASIZED IN GREY. THE TOTAL ROW SHOWS THE NUMBER OF WINS BY EACH MUTATION STRATEGY. * INDICATES

THE TWO-TAILED WILCOXON’S RANK-SUM TEST AT A 0.05 SIGNIFICANCE LEVEL.

F

DE/rand/1 MDE/rand/1 DE/rand-to-best/1 MDE/rand-to-best/1 DE/rand/2 MDE/rand/2

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

f1 0.00E+00 1.11E-13 0.00E+00 0.00E+00 4.41E-01 2.19E-01 0.00E+00* 1.14E-13 6.31E+03 1.15E+03 0.00E+00* 0.00E+00

f2 2.10E+07 6.34E+06 2.21E+06* 5.83E+05 5.08E+09 8.45E+08 3.17E+06* 1.10E+06 9.89E+09 1.86E+09 1.73E+06* 5.70E+05

f3 6.12E+08* 4.70E+08 8.11E+13 2.38E+14 1.18E+14 5.63E+13 1.41E+09* 9.08E+08 7.99E+14 4.71E+14 4.93E+08* 3.47E+08

f4 1.51E+05 1.32E+04 5.96E+03* 1.91E+03 9.50E+05 2.40E+05 3.09E+03* 3.29E+03 9.99E+05 2.03E+05 5.56E+04* 1.74E+04

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.13E+00 2.24E+00 0.00E+00* 5.57E-14 5.23E+03 1.05E+03 0.00E+00* 0.00E+00

f6 1.23E+02* 3.91E+01 1.88E+02 4.37E+01 1.20E+02* 4.20E+01 1.48E+02 3.12E+01 1.54E+03 3.56E+02 1.28E+02* 3.56E+01

f7 1.95E+02* 7.00E+01 1.11E+06 1.20E+06 5.80E+03 1.52E+03 1.82E+02* 2.51E+01 1.38E+04 4.37E+03 1.06E+02* 1.42E+01

f8 2.13E+01* 1.92E-02 2.13E+01 1.52E-02 2.13E+01 1.68E-02 2.13E+01 1.65E-02 2.13E+01 1.58E-02 2.13E+01 2.04E-02

f9 1.60E+02* 3.64E+00 1.60E+02 1.36E+00 1.60E+02 1.48E+00 1.60E+02 1.38E+00 1.61E+02 1.72E+00 1.60E+02 2.32E+00

f10 8.55E-02* 4.18E-02 1.48E-01 5.97E-02 2.26E+02 4.28E+01 7.81E-02* 3.81E-02 1.17E+04 1.74E+03 6.68E-02* 4.29E-02

f11 8.76E+01* 5.11E+01 3.10E+02 5.74E+01 9.52E+02 5.14E+01 4.36E+02* 6.31E+01 1.16E+03 4.68E+01 1.75E+02 3.09E+01

f12 8.49E+02 2.45E+01 3.50E+02* 6.26E+01 1.03E+03 3.26E+01 5.70E+02* 1.17E+02 1.31E+03 6.51E+01 5.36E+02* 3.36E+02

f13 8.59E+02 2.68E+01 5.87E+02* 4.93E+01 1.03E+03 3.49E+01 1.02E+03 1.42E+02 1.31E+03 7.51E+01 9.04E+02* 3.06E+01

f14 2.54E+04 2.20E+03 1.34E+04* 6.80E+02 3.33E+04 2.93E+02 1.19E+04* 1.48E+03 3.33E+04 6.22E+02 1.27E+04* 1.60E+03

f15 3.24E+04 4.62E+02 3.17E+04* 3.12E+02 3.32E+04 4.24E+02 3.27E+04 5.84E+02 3.36E+04 3.24E+02 3.28E+04* 4.31E+02

f16 3.92E+00 3.07E-01 4.00E+00 2.29E-01 3.95E+00 2.35E-01 3.90E+00 2.19E-01 4.08E+00 1.43E-01 4.06E+00 2.11E-01

f17 6.95E+02 5.43E+01 5.96E+02 1.21E+02 1.09E+03 2.45E+01 5.18E+02* 5.45E+01 1.48E+03 5.79E+01 3.93E+02* 4.58E+01

f18 9.28E+02* 2.46E+01 9.99E+02 3.88E+01 1.11E+03 2.68E+01 1.11E+03 5.67E+01 1.49E+03 6.64E+01 9.76E+02* 1.98E+01

f19 6.93E+01 4.76E+00 5.77E+01* 1.30E+01 9.54E+01 4.47E+00 6.18E+01* 2.47E+01 4.12E+05 5.79E+05 2.46E+01* 3.83E+00

f20 5.00E+01 1.49E-10 5.00E+01* 8.84E-04 5.00E+01 0.00E+00 5.00E+01 0.00E+00 5.00E+01 8.95E-14 5.00E+01 9.25E-13

f21 3.50E+02* 5.00E+01 6.14E+03 3.37E+03 5.79E+02 1.23E+02 3.80E+02* 4.00E+01 3.92E+03 2.70E+02 3.70E+02* 4.58E+01

f22 2.57E+04 1.32E+03 1.40E+04* 2.18E+03 3.40E+04 4.34E+02 1.17E+04* 1.86E+03 3.43E+04 3.29E+02 1.21E+04* 1.02E+03

f23 3.29E+04 6.55E+02 3.18E+04* 6.39E+02 3.43E+04 5.87E+02 3.37E+04 5.83E+02 3.48E+04 7.14E+02 3.40E+04* 3.34E+02

f24 6.08E+02 4.11E+00 6.06E+02 8.09E+00 6.13E+02 4.22E+00 6.12E+02 4.46E+00 6.19E+02 5.22E+00 6.12E+02* 3.94E+00

f25 6.04E+02 2.36E+00 6.03E+02 3.43E+00 6.04E+02* 2.50E+00 6.09E+02 3.31E+00 6.08E+02 3.46E+00 6.09E+02 4.28E+00

f26 7.08E+02 4.69E+00 7.04E+02 5.36E+00 7.14E+02 5.31E+00 7.09E+02 3.51E+00 7.24E+02 4.07E+00 7.06E+02* 6.08E+00

f27 4.34E+03 4.00E+01 4.33E+03 4.55E+01 4.42E+03 5.19E+01 4.38E+03 5.68E+01 4.51E+03 4.39E+01 4.40E+03* 4.05E+01

f28 3.62E+03* 1.07E+03 2.08E+04 7.23E+03 5.19E+03* 7.74E+01 6.89E+03 1.98E+03 1.23E+04 1.85E+03 3.49E+03* 9.02E+02

Total 2 26 6 23 2 26

vectors in DE/rand-to-best/1 are selected based on the pro-

posed algorithm). The corresponding MDE strategy outper-

formed the classical mutation strategy almost in all bench-

mark problems and in all tested dimensions. It has shown the

most improvement as compared to MDE and the correspond-

ing other mutation strategies and this can be attributed to the

fact that DE/rand/2 has five randomly (blindly) selected mu-

tant vectors instead of three mutant vectors in DE/rand/1. Ta-

bles II and IV, columns 10 to 13 show the mean best and

standard deviation of DE/rand/2 and MDE/rand/2 for D = 30

and 100. Figure 1 illustrates the performance comparison be-

tween traditional DE and MDE for the three mutation strate-

gies when D = 30 and 100. These curves show MDE con-

verges faster than the conventional DE in all mutation strate-

gies. Table III summarizes the overall performance of MDE

for all tested dimensions (D = 10, 30, 50 and 100). Based on

the observed results in four sets of experiments, the results

can be summarized as follows:

• As the dimension increases the performance of MDE gets

better in term of the solution accuracy in most of the ex-

perimented DE mutation strategies. This suggests that

MDE may be suitable for large-scale global optimization

problems.

• The performance of MDE based mutation strategies were

better than those of the classical mutation strategies. This

suggests the proposed merit-based computation has the

capability of improving the performance of algorithms in-

volving some sort of selection strategy (at least it would

be computationally “cheaper” than other selection strate-

gies).

• The elitism of an individual should be measured based on

its performance, not only at the current generation (MDE

short-term performance) but also the overall performance

throughout the generations (MDE long-term perfor-

mance).

• As the number of randomly selected vectors increases

(e.g. three random vectors in DE/rand/1 to five random

vectors in DE/rand/2) the performance of the correspond-

ing MDE algorithm showed better improvement. This

suggests the proposed merit-based selection strategy can

significantly increase the performance of algorithms with

many random mutant vectors.

VI. CONCLUSION

In this paper, we proposed a novel merit-based mutation

strategy for DE (MDE). MDE uses short-term performance

(the performance of each individual in the current generation)

and long-term performance (the performance of each individ-

ual throughout the generations) to minimize the possible neg-

ative effects of a pure “blind” selection strategy employed by

the traditional DE mutation strategies. The performance of

MDE was compared to three traditional DE mutation strate-

gies namely, DE/rand/1, DE/rand-to-best/1 and DE/rand/2.

Experimental results on 28 benchmark problems showed that

the performance of the traditional DE mutations can signifi-

cantly be improved by MDE.

Almost in all test problems, the proposed algorithm outper-

formed the parent traditional DE mutation strategy in term of

solution accuracy. As the number of randomly selected mu-

tant vectors increased (e.g., three random mutant vectors in

DE/rand/1 to five mutant random vectors in DE/rand/2) the

performance of the corresponding MDE algorithm for

DE/rand/2 showed better improvement as compared to MDE

for DE/rand/1. This shows that as the number of randomly

selected vectors increase the solution accuracy of DE de-

grades and merit-based selection strategy can greatly improve

the performance.

For future work, first, we would like to investigate the im-

pact of short-term to long-term performance weights (in the

current proposal the short-term and the long-term have the

same impact factor in the selection process). Second, we

would like to investigate the impact of using only � genera-

tions’ performance as supposed to all generations. Last but

not least, we would like to extend the merit-based selection

strategy to evolutionary multi-objective algorithms involving

random, rank or elite selection mechanism.

REFERENCES

[1] S. Binitha & S. S. Sathya. A Survey of Bio inspired Optimization
Algorithms, International Journal of Soft Computing and Engineer-

ing (IJSCE), ISSN: 2231-2307, Volume-2, Issue-2, 2012.

[2] E. G. Talbi, Metaheuristics from design to implementation, John
Wiley and Sons, ISBN: 978-0470-27858-1, 2009.

[3] M. Gendreau & J. Y. Potvin (eds.). Handbook of Metaheuristics, In-

ternational Series in Operations Research & Management Science,
Springer, 2010.

[4] C. R. Reeves & J. E. Rowe. “Genetic algorithms-principles and per-

spectives: a guide to GA theory,” (Vol. 20). Springer, 2002.
[5] B. L. Miller & D. E. Goldberg. "Genetic algorithms, tournament se-

lection, and the effects of noise." Complex Systems 9.3 pp. 193-212,

1995.
[6] R. Storn & K. Price. Differential evolution - a simple and efficient

adaptive scheme for global optimization over continuous spaces.

Technical report. International Computer Science Institute, Berkley,
1995.

[7] M. Ali & M. Pant. Improving the performance of differential evolu-

tion algorithm using Cauchy mutation. Soft Computing, 15(5), pp.
991-1007, 2011.

[8] S. Islam, S. Das, S. Ghosh, S. Roy, & P. N. Suganthan. An adaptive
differential evolution algorithm with novel mutation and crossover

strategies for global numerical optimization. Systems, Man, and Cy-

bernetics, Part B: Cybernetics, IEEE Transactions on, 42(2), pp.
482-500, 2012.

[9] Gong, W. & Cai, Z. Differential evolution with ranking-based mu-

tation operators. Cybernetics, IEEE Transactions on, 43(6), 2066-
2081, 20013.

[10] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos,

& M. N. Vrahatis. Enhancing differential evolution utilizing prox-
imity-based mutation operators. Evolutionary Computation, IEEE

Transactions on, 15(1), pp. 99-119, 2011.

[11] H. Y. Fan & J. Lampinen. A trigonometric mutation operation to
differential evolution. Journal of Global Optimization, 27(1), pp.

105-129, 2003.

[12] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, & M. F. Tasgetiren. Dif-
ferential evolution algorithm with ensemble of parameters and mu-

tation strategies. Applied Soft Computing, 11(2), pp. 1679-1696,

2011.
[13] S. Das, A. Abraham, U. K. Chakraborty, & A. Konar. Differential

evolution using a neighborhood-based mutation operator. Evolu-

tionary Computation, IEEE Transactions on, 13(3), pp. 526-553,
2009.

[14] P. Kaelo & M. M. Ali. Differential evolution algorithms using hy-

brid mutation. Computational Optimization and Applications, 37(2),
pp. 231-246, 2007.

[15] J. Zhang & A. C. Sanderson. JADE: adaptive differential evolution

with optional external archive. Evolutionary Computation, IEEE
Transactions on, 13(5), pp. 945-958, 2009.

[16] J. Brest, S. Greiner, B. Boskovic, M. Mernik, & V. Zumer. Self-

adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems. Evolutionary Computa-

tion, IEEE Transactions on, 10(6), pp. 646-657, 2006.

[17] S. Rahnamayan, H. R. Tizhoosh, & M. M. Salama. Opposition-
based differential evolution. Evolutionary Computation, IEEE

Transactions on, 12(1), pp. 64-79, 2008.

[18] X. Yao, Y. Liu, & G. Lin. Evolutionary programming made faster.
Evolutionary Computation, IEEE Transactions on, 3(2), 82-102,

1999.

[19] F. Neri, & V. Tirronen. Recent advances in differential evolution: a
survey and experimental analysis. Artificial Intelligence Review,

33(1-2), 61-106, 2010.

[20] J. J Liang, B. Y Qu, & P. N. Suganthan. Problem Definitions and
Evaluation Criteria for the CEC 2013 Special Session on Real-Pa-

rameter Optimization, 2013.

[21] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures: crc Press, 2003

